قیمت پلی آمید الیاف دار

خرید فروش مواد اولیه پلی آمید و پلی آمید الیاف دار

قیمت پلی آمید الیاف دار

خرید فروش مواد اولیه پلی آمید و پلی آمید الیاف دار

قیمت پلی آمید الیاف دار

خرید فروش پلی آمید الیافدار و بدون الیاف مهندسی
02432464409

۱۱ مطلب در آبان ۱۳۹۷ ثبت شده است

۳۰
آبان

الیافی که در صنعت کامپوزیت استفاده می شوند به دو دسته تقسیم می شوند: 

الف)الیاف مصنوعی 

ب)الیاف طبیعی

کارایی کامپوزیت های پلیمری مهندسی توسط خواص اجزاء آنها تعیین می شود. اغلب آنها دارای الیاف با مدول بالا هستند که در ماتریس های پلیمری قرار داده شده اند و فصل مشترک خوبی نیز بین این دو جزء وجود دارد.

ماتریس پلیمری دومین جزء عمده کامپوزیت های پلیمری است. این بخش عملکردهای بسیار مهمی در کامپوزیت دارد. اول اینکه به عنوان چسب الیاف تقویت کننده را نگه می دارد. دوم، ماتریس تحت بار اعمالی تغییر شکل می دهد و تنش را به الیاف محکم و سفت منتقل می کند.

سوم، رفتار پلاستیک ماتریس پلیمری، انرژی را جذب کرده، موجب کاهش تمرکز تنش می شود که در نتیجه، رفتار چقرمگی در شکست را بهبود می بخشد.

تقویت کننده ها معمولا شکننده هستند و رفتار پلاستیک ماتریس می تواند موجب تغییر مسیر ترک های موازی با الیاف شود و موجب جلوگیری از شکست الیاف واقع در یک صفحه شود.

بحث در مورد مصادیق ماتریس های پلیمری مورد استفاده درکامپوزیت ها به معنای بحث در مورد تمام پلاستیک های تجاری موجود می باشد. در تئوری تمام گرماسخت ها و گرمانرم ها می توانند به عنوان ماتریس پلیمری استفاده شوند. در عمل، گروه های مشخصی از پلیمرها به لحاظ فنی و اقتصادی دارای اهمیت هستند.

در میان پلیمرهای گرماسخت پلی استر غیر اشباع، وینیل استر، فنل فرمآلدهید(فنولیک) اپوکسی و رزین های پلی ایمید بیشترین کاربرد را دارند. در مورد گرمانرم ها، اگرچه گرمانرم های متعددی استفاده می شوند، PEEK، پلی پروپیلن و نایلون بیشترین زمینه و اهمیت را دارا هستند. همچنین به دلیل اهمیت زیست محیطی، دراین بخش به رزین های دارای منشا طبیعی و تجدیدپذیر نیز، پرداخته شده است.

از الیاف متداول در کامپوزیت ها می توان به شیشه، کربن و آرامید اشاره نمود. در میان رزین ها نیز، پلی استر، وینیل استر، اپوکسی و فنولیک از اهمیت بیشتری برخوردار هستند.

 02432464407-09


۲۹
آبان

خواص کامپوزیت ها به عوامل مختلفی از قبیل نوع مواد تشکیل دهنده و ترکیب درصد آنها، شکل و آرایش تقویت کننده و اتصال دو جزء به یکدیگر بستگی دارد.

از نظر فنی، کامپوزیت های لیفی، مهم ترین نوع کامپوزیت ها می باشند که خود به دو دسته الیاف کوتاه و بلند تقسیم می شوند. الیاف می بایست استحکام کششی بسیار بالایی داشته، خواص لیف آن (در قطر کم) از خواص توده ماده بالاتر باشد. در واقع قسمت اعظم نیرو توسط الیاف تحمل می شود و ماتریس پلیمری در واقع ضمن حفاظت الیاف از صدمات فیزیکی و شیمیایی، کار انتقال نیرو به الیاف را انجام می دهد. ضمناَ ماتریس الیاف را به مانند یک چسب کنار هم نگه می دارد و البته گسترش ترک را محدود می کند. مدول کششی ماتریس پلیمری باید از الیاف پایین تر باشد و اتصال قوی بین الیاف و ماتریس به وجود بیاورد. خواص کامپوزیت بستگی زیادی به خواص الیاف و پلیمر و نیز جهت و طول الیاف و کیفیت اتصال رزین و الیاف دارد. اگر الیاف از یک حدی (طول بحرانی) کوتاه تر باشند، نمی توانند حداکثر نقش تقویت کنندگی خود را ایفا نمایند.

 02432464407-09
۲۸
آبان

در کاربردهای مهندسی، اغلب به تلفیق خواص مواد نیاز است. به عنوان مثال در صنایع هوافضا، کاربردهای زیر آبی، حمل و نقل و امثال آنها، امکان استفاده از یک نوع ماده که همه خواص مورد نظر را فراهم نماید، وجود ندارد. به عنوان مثال در صنایع هوافضا به موادی نیاز است که ضمن داشتن استحکام بالا، سبک بوده و مقاومت سایشی خوبی داشته باشند.

از آنجا که نمی توان ماده ای یافت که همه خواص مورد نظر را دارا باشد، باید به دنبال چاره ای دیگر بود. کلید این مشکل، استفاده از کامپوزیت هاست.

کامپوزیت ها موادی چند جزئی هستند که خواص آنها در مجموع از هرکدام از اجزاء بهتر است. ضمن آنکه اجزای مختلف، کارایی یکدیگر را بهبود می بخشند. در کامپوزیت های پلیمری حداقل دو جزء مشاهده می شود: 

1 - فاز تقویت کننده که درون ماتریس پخش شده است. 

2 - فاز ماتریس که فاز دیگر را در بر می گیرد و یک پلیمر گرماسخت یا گرمانرم می باشد که گاهی قبل از سخت شدن آن را رزین می نامند.

 02432464407-09


۲۷
آبان

با توجه به چرخه قالبگیری سریع ،‌ انگیزه های اقتصادی زیادی برای استفاده از این مواد در کاربرد های متعدد وجود دارد که از آن جمله می توان به موارد زیر اشاره نمود:

صنایع خودروسازی: نظر به فرآیند پذیری ، مقاومت حرارتی و شیمیایی خوب پلی آمید های 6 و 66 و انعطاف پذیری آنها در طراحی ، این مواد معمولا به عنوان آلترناتیو قطعات فلزی ، در فضای موتور استفاده می شوند. خواص مکانیکی خوبی نظیر (سختی ،‌مقاومت به خزش و ...) ‌در طراحی قطعات خودرویی ، ایمنی و راحتی بیشتر را بدست خواهد داد.

صنایع برق و الکترونیک : در صنایع برق و الکترونیک که تستهای GWIT و UL94 الزامی است،‌ پلی آمید های 6 و 66 به راحتی می توانند شرایط تست اشتعال را بگذرانند و به دلیل فرآیند پذیری مطلوب، کاندیدای خوبی برای تولید قطعات کوچک مقاوم به حرارت با جداره نازک به حساب آیند.

کالاهای مصرفی و صنعتی : پلی آمید 66 به دلیل قالبگیری سریع ،‌ رنگ پذیری ،‌زیبایی سطحی ،‌مقاومت مکانیکی عالی راه حل مناسبی برای تولید کالاهای خانگی و صنعتی برای طراحی های پیچیده محسوب می گردد.

02432464407-09
۲۶
آبان

الاستومرها

رابرها و الاستومرها عمدتاً بعنوان مواد پوشش برج ها،مخازن، تانکها، و لوله ها استفاده می شوند. مقاومت شیمیایی بستگی به نوع رابر و ترکیبات آن دارد. اخیراً رابرهای مصنوعی به بازار عرضه شده که نیازهای صنایع شیمیایی را تا حد زیادی تامین کند. هرچند هیچ یک از رابرهای تهیه شده دارای خواص رابر طبیعی نیست، ولی در یک یا چند مورد نسبت به آن برتری دارد. از رابرهای مصنوعی، ترانس – پلی ایزوپرن سیس- پلی بوتادین، شبیه رابر طبیعی هستند. تفاوت رابرها و الاستومرها در کاربردهای خاص، مشخص می شود.

الف) رابر طبیعی (NR) : رابر طبیعی یا سیس – ۱ و ۴- پلی‌ایزوپرن دارای منومر اولیه سیس – ۱ و ۴- ایزوپرن (این ماده گاهی کائوچو نامیده می‌شود) است. رابر طبیعی توسط فرآوری عصاره درخت رابر (Heva Brasiliensis) با بخار، و ترکیب آن با عوامل ولکانیزه، آنتی‌اکسیدان‌ها و پرکننده تهیه می‌شود. رنگهای دلخواه می‌تواند با ترکیب رنگدانه‌های مناسب (به عنوان مثال، قرمز: اکسید آهن- Fe2O3، سیاه: کربن سیاه و سفید: اکسید روی – ZnO) حاصل شود. رابر طبیعی دارای خواص دی‌الکتریک مناسب قابلیت ارتجاعی عالی، قابلیت جذب ارتعاش بالا و مقاومت شکست مناسب است. بطور کلی، رابرهای طبیعی از نظر شیمیایی در مقابل اسیدهای معدنی رقیق، قلیا و نمکها مقاوم هستند. رابر طبیعی، براحتی توسط مواد شیمیایی اکسید‌کننده، اکسیژن اتمسفری، ازن، روغن‌ها، بنزن و ستن‌ها مورد حمله قرار گرفته وغالباً دارای مقاومت شیمیایی کم در مقابل نفت و مشتقات آن و بسیاری مواد شیمیایی آلی هستند، بطوری که در معرض آنها نرم می‌شوند. علاوه بر این، در مقابل تابش اشعه UV (به عنوان مثال، قرار گرفتن در معرض نور خورشید) بسیار حساس هستند.

در مجموع این ماده برای کاربردهایی که به مقاومت سایشی، مقاومت الکتریکی و خواص جذب ضربه یا ارتعاش نیاز دارند، بسیار مناسب است. با وجود این، به واسطه محدودیت مکانیکی رابر طبیعی، و همچنین بسیاری رابرهای مصنوعی، توسط ولکانیزاسیون و ترکیب با افزودنیهای دیگر این مواد به محصولات پایدارتر و سخت‌تر تبدیل می‌شوند. فرآیند ولکانیزاسیون شامل اختلاط رابر طبیعی یا مصنوعی خام با ۲۵ درصد وزنی سولفور و حرارت مخلوط در OC150 است. مواد رابر حاصله به واسطه واکنش‌های زنجیری بین رشته‌های کربن مجاور به مراتب سخت‌تر و قوی‌تر از مواد اولیه هستند. بنابراین، کاربردهای صنعتی رابر طبیعی ولکانیزه شده شامل مواردی نظیر: پوشش داخلی پمپ‌ها، شیرها، لوله‌ها، خرطومی‌ها و اجزای ماشین کاری است. به دلیل مقاومت شیمیایی پایین و حساسیت این رابر به نور خورشید، که یک خاصیت نامطلوب در صنایع است، امروزه این ماده با انواع جدید الاستومرها جایگزین می‌شود.

ب – ترانس- پلی‌ایزوپرن رابر (PIR) : ترانس – ۱ و ۴- پلی‌ایزوپرن رابر، یک رابر مصنوعی با خواص مشابه نوع طبیعی آن است. این ماده اولین بار در طول جنگ جهانی دوم به واسطه مشکلات تامین رابر طبیعی بطور صنعتی شناخته شد. گرچه، این ماده حاوی ناخالصی‌های کمتری نسبت به رابر طبیعی بوده و فرآیند تهیه آن بسیار ساده است، به دلیل قیمت بالای آن، زیاد مورد استفاده قرار نمی گیرد. خواص مکانیکی و مقاومت شیمیایی آن، مشابه رابر طبیعی بوده و مانند بسیاری از انواع دیگر رابرها خواص مکانیکی آن توسط فرآیند ولکانیزاسیون بهبود می‌یابد.

ج- رابر استایرن بوتادین (SBR) : رابر استایرن بوتادین، یک کوپلیمر استایرن و بوتادین است. این رابر تحت نام تجاری Buna S شناخته شده است. مقاومت شیمیایی آن مشابه رابر طبیعی است و دارای مقاومت پایین در مقابل اکسید‌کننده‌ها، هیدروکربن‌ها و روغن‌های معدنی است. از این رو از نظر شیمیایی مزیت خاصی نسبت به دیگر رابرها ندارد این رابر در تایر اتومبیل، تسمه‌ها، واشرها، لوله‌های خرطومی و دیگر محصولات متنوع استفاده می‌شود.

د- رابر نیتریل (NR) : نیتریل رابر، یک کوپلیمر از بوتادین و آکریلونیتریل است. این ماده در نسبتهای متفاوت از ۲۵:۷۵ تا ۷۵:۲۵ ساخته می‌شود که سازنده باید درصد آکریلونیتریل را در محصول خود مشخص کند. رابر نیتریل تحت نام تجاری Buna N شناخته شده و نظر به مقاومت در برابر متورم شدن در حالت غوطه‌وری در روغن‌های معدنی، دارای مقاومت بالا در مقابل روغن‌ها و حلا‌ل‌ها است. علاوه بر این، مقاومت شیمیایی آن در مقابل روغن‌ها متناسب با میزان آکریلونیتریل آن است. گرچه این ماده در مقابل اکسید‌کننده‌های قوی نظیر اسید نیتریک مقاوم نیست، مقاومت خوبی در مقابل ازن و تابش اشعه UV نشان می‌دهد. رابر نیتریل برای لوله‌های پلاستیکی گازوئیل، دیافراگم پمپ‌های سوخت، واشرها، آب‌بندها و درزگیرها (نظیر او- رینگ‌ها) ونهایتاً زیره‌های مقاوم در برابر روغن برای کفش‌های کار ایمنی استفاده می‌شوند.

ه) بوتیل رابر : بوتیل رابر، یک کوپلیمر از ایزوبوتیلن و ایزوپرن است. بوتیل رابر از نظر شیمیایی در مقابل اسیدهای معدنی رقیق، نمکها و قلیاها مقاوم بوده و مقاومت شیمیایی خوبی در مقابل اسید‌های غلیظ به استثنای اسیدنیتریک و اسید سولفوریک دارا است. این رابر در مقابل ازن نیز مقاومت بالایی دارد. گرچه به راحتی در مقابل مواد شیمیایی اکسید‌کننده، روغن‌ها، بنزن، و ستن‌ها مورد حمله قرار می‌گیرد، دارای مقاومت شیمیایی پایین در مقابل نفت و مشتقات آن و دیگر مواد شیمیایی آلی است. علاوه بر این، رابر بوتیل در مقابل اشعه UV (مانند قرار گرفتن در معرض نور خورشید) بسیار حساس است. مشابه دیگر رابرها، خواص مکانیکی آن توسط فرآیند ولکانیزاسیون بهبود می‌یابد. کاربردهای صنعتی آن مشابه کاربردهای رابر طبیعی است. بوتیل رابر برای تیوبهای داخلی تایر و لوله‌های خرطومی استفاده می‌شود.

نتیجه‌گیری:

با توجه به مطالب ارایه شده در این مبحث، پلیمرها به سه گروه اصلی ترموپلاستیک‌ها، ترموست‌ها و الاستومرها تقسیم

می شوند که بعضی انواع آن از نظر خواص فیزیکی و کاربردهای آنها بیان شد. نتیجه حاصل از بررسی انواع مختلف پلیمرها مشخص می‌کند که هر سه گروه مذکور داری مقاومت شیمیایی بسیار بالا در برابر اسیدهای معدنی بوده و تقریباً همه آنها در مقابل تابش اشعه UV، مخصوصاً تابش نور خورشید، بسیار حساس هستند.

ترموپلاستیک‌ها با توجه به خواص مکانیکی و شیمیایی مناسب، در بسیاری کاربردهای صنعتی نظیر لوله‌ها و تجهیزات انتقال، تجهیزات الکتریکی، پوشش‌ها، اتصالات و نظایر آن استفاده می‌شوند. ترموست‌ها برخلاف ترموپلاستیک‌ها دارای مقاومت خوردگی پایینی هستند و در نتیجه استفاده از آنها در صنایع محدود به ساخت لوله‌ها، شیرها، پمپ‌ها، ظروف، پوشش‌های محفاظ، عایق‌کاری، چسبنده‌ها و … می شود. الاستومرها نیز به عنوان مواد پوشش‌ مخازن، تانکها و لوله‌ها استفاده شده و از نظر شیمیایی در مقابل اسیدهای معدنی رقیق، قلیاها و نمک ها مقاوم هستند.

منبع : انجمن کامپوزیت ایران

02432464407-09
۲۵
آبان

ترموست ها

الف – پلی اورتان ها (PUR) : این پلیمرها در فرمهای مختلف نظیر فوم های انعطاف پذیر و سخت، الاستومورها و رزین های مایع استفاده می شوند. پلی اورتان ها در برابر اسیدها و بازهای قوی و حلال های آلی دارای مقاومت خوردگی پایین هستندو فوم های انعطاف پذیر عمدتاً برای کاربردهای خانگی (نظیر بسته بندی ) استفاده می شوند، در حالیکه فوم های سخت به عنوان مواد عایق حرارتی برای انتقال سیالات کرایوژنیک و محصولات غذایی سرد بکار گرفته می شود.

ب – پلاستیک های فوران : این پلاستیک ها از فنولیگ گران تر هستند، اما استحکام کششی بالاتری دارند. بعضی مواد در این دسته دارای مقاومت قلیایی بیشتر هستند. مقاومت حرارتی این پلی استرها حدود 0C80 است.

رزین‌های اپو کسی (EP) : اپوکسی های با پایه گلیسیدال اتر شاید بهترین ترکیب از نظر مقاومت سایشی و خواص مکانیکی باشند. اپوکسی های تقویت شده با فایبر گلاس استحکام بسیار بالا و مقاومت حرارتی خوبی دارند و مقاومت شیمیایی رزین اپوکسی در مقابل اسیدهای ضعیف بسیار عالی و در مقابل اسیدهای قوی نامناسب می باشد. مقاومت قلیایی آن، در محلول های ضعیف بسیار خوب است. اپوکسی در قالب ریزی، اکستروژن ها، ورقه ها، چسبنده ها و پوشش ها کاربرد دارند. این مواد بعنوان لوله ها ، شیرها، پمپ ها، تانک های کوچک، ظروف، سینک ها، آسترکاریها، پوشش های محافظ، عایق کاری، چسبنده ها و حدیده ها بکار می روند.

منبع : انجمن کامپوزیت ایران

02432464407-09

۲۴
آبان

پلیمرها به طور کلی به سه گروه اصلی گرمانرم ها یا تروموپلاستیک ها، گرما سخت ها یا ترموست ها، الاستومرها دسته بندی می‌شوند.

ترموپلاستیک ها با افزایش دما نرم شده و با خنک شدن به سختی اولیه اشان برمی گردند و بیشتر قابل ذوب هستند، به عنوان مثال، نایلون، پلاستیک های گرما سخت  (ترموست ها) وقتی گرم می شوند، سخت شده و هنگام سرد شدن به سختی اولیه برمی گردند. این مواد توسط کاتالیزورها یا گرم شدن تحت فشار به یک شکل دائمی تبدیل می شوند. الاستومرها نظیر رابرها می توانند بدون پاره شدن و گسستن در برابر تغییر شکل مقاومت کنند. در مطلب حاضر، انواع محدودی از پلیمرهای هر گروه و کاربرد و خواص آنها مورد بررسی قرار می گیرد.

ترموپلاستیک ها 

الف – پلی اولفین : یا پلیمرهای اتنیک همه این ترموپلاستیک ها بطور مشترک دارای منور اتلین (H2C=CH2) هستند.

پلی اتیلن ۶(PE)- پلی اتیلن اولین محصول تجاری در سال ۱۹۴۰ بوده و از نفت خام یا گاز طبیعی تهیه می شود.

پلی اتیلن یک ماده ترموپلاستیک است که بسته به ساختار مولکولی از یک نوع به نوع دیگر متفاوت است. در حقیقت، با تغییر وزن مولکولی (یعنی طول زنجیر)، تبلور (یعنی وضعیت زنجیر)، و خواص شاخه ( یعنی پیوند شیمیایی بین زنجیرهای مجاور) می‌ توان محصولات متنوعی از آن تولید کرد. پلی‌اتیلن می تواند در چهار نوع تجاری تهیه شود:

(۱) دانسیته پایین، (۲) دانسیته متوسط، (۳) دانسیته بالا و (۴) پلی‌اتیلن با وزن مولکولی بسیار بالا.

پلی اتیلن دانسیته پایین (LDPE)دارای نقطه ذوب OC1050، سختی، مقاومت شکست فشاری، شفافیت، انعطاف پذیری و خاصیت انبساط پذیری است. بنابراین، به دلیل روش ساخت و استعمال آسان آن، برای لوله کشی و بسته‌بندی‌ها استفاده می شود. مقاومت شیمیایی آن بسیار برجسته است، گر چه به اندازه پلی‌اتیلن دانسیته و یا پلی پروپیلن نیست، اما این پلیمر در مقابل بسیاری اسیدهای معدنی (مانند HCI و HF) و قلیاها (نظیر NH4OH-KOH-NaoH) مقاوم بوده و برای جابجایی مواد شیمیایی معدنی می توان از آن استفاده کرد، ولی باید از تماس آن با آلکان ها، هیدروکربن های آروماتیک، هیدروکربن های کلرینه و اکسید کننده‌های قوی (نظیر HNo3)) اجتناب کرد. اتصال قسمتهای مختلف از جنس PE با استفاده از جوش ذوبی انجام می شود. بدین ترتیب، انجام لوله کشی به این شکل ارزان بوده و نسبت به دیگر مواد موجود، برای خطوط فاضلاب، خطوط آب، و دیگر سرویسهایی که در معرض فشارها و یا درجه حرارت های بالا قرار نمی گیرند، بسیار مقاوم و بهترین انتخاب است. با وجود این، محدودیت هایی وجود دارد که استفاده از آنها را در بسیاری کاربردها غیرممکن می سازد. این محدودیت ها عبارت از، استحکام پایین، مقاومت حرارتی پایین (بالاترین محدوده دمایی برای این ماده 0C60 است)، نزول کیفیت تحت پرتو تابی UV (مانند قرار گرفتن در معرض نور خورشید) است. با وجود این، پلی اتیلن می تواند جهت افزایش استحکام، مقاومت و دیگر خواص مکانیکی مطلوب با مواد دیگر ترکیب شود.

پلی اتیلن دانسیته بالا (HDPE)دارای خواص مکانیکی برجسته و مقاومت مکانیکی نسبتاً بیشتری در مقایسه با نوع دانسیته پایین است. تنها اکسید کننده های قوی بطور محسوس در محدوده دمایی مشخص به این مواد حمله خواهند کرد. اگر رزین پایه درست انتخاب نشود، شکست فشاری HDPE می تواند مشکل ساز باشد. خواص مکانیکی این ماده، استفاده از آنها را در شکل های بزرگتر و کاربردهایی نظیر مواد ورقه ای در داخل مخازن، بعنوان عایق کاری در ستون‌ها گسترش داده است. در این ماده نیز از جوش حرارتی می توان استفاده کرد.

پلی اتیلن با وزن مولکولی بسیار بالا (UHMWPE)یک پلی اتیلن خطی با محدوده وزن مولکولی متوسط ۱۰۶×۳ تا ۱۰۶×۵ است. زنجیرهای خطی طولانی، مقاومت ضربه بالا، مقاومت در برابر سایش، سختی، مقاومت در برابر شکست فشاری را، علاوه بر خواص عمومی PE نظیر خنثی بودن در مقابل مواد شیمیایی و ضریب اصطکاک پایین ایجاد می‌کنند. بنابراین، این ترموپلاستیک برای کاربردهایی که نیاز به مقاومت در برابر سایش دارند، نظیر اجزای استفاده شده در ماشین آلات بکار می رود. در حالت کلی، پلی‌اتیلن‌ها در مقابل تابش اشعه UV، مخصوصاً تابش نور خورشید بسیار حساس هستند. با وجود این، می‌توان از حساسیت آن با افزایش تثبیت‌کننده‌های مخصوص جلوگیری کرد.

پلی پروپیلن (PP) با متیل جانشین شده بر روی اتیلن (پروپیلن) بعنوان منومر، خواص مکانیکی بطور قابل ملاحظه ای در مقایسه با پلی اتیلن بهبود می یابد، در حقیقت این پلیمر دارای دانسیته پایین (kg.m3 915-900)، سخت تر و محکم تر بوده و دارای استحکام بیشتری نسبت به انواع دیگر است. علاوه بر این نسبت به PE در دماهای بالاتری مورد استفاده قرار می‌گیرد. مقاومت شیمیایی آن بیشتر بوده و تنها توسط اکسید کننده های قوی مورد حمله قرار می گیرد. اگر در انتخاب رزین مناسب دقت نشود، شکست فشاری PP می‌تواند مشکل ساز باشد.خواص مکانیکی بهتر این ماده استفاده از آن را در اشکال بزرگتر، به شکل مواد ورقه ای داخل مخازن، بعنوان پوشش گسترش داده است. ضریب انبساط حرارتی برای PP از HDPE کمتر است. دو کاربرد مهم PP ساخت قسمت های قالب تزریقی و رشته‌ها و فیبرها است.

پلی بوتیلن (PB) از پلی ایزوبوتیلن حاصل از تقطیر روغن خام تهیه شده است. منومر آن اتیلن با دو گروه متیل جایگزین شده با دو اتم هیدروژن است.

پلی‌وینیل کلراید (PVC) اولین ترموپلاستیک استفاده شده در مقادیر بالا در کاربردهای صنعتی است. این پلیمر با واکنش گاز استیلن با اسید‌هیدروکلریک در حضور کاتالیزور مناسب تهیه می شود. استفاده از PVC به دلیل سادگی ساخت، در طول سالها افزایش یافته است. این پلیمر دارای کاربری آسان است.در مقابل اسیدها و بازهای معدنی قوی مقام بوده و در نتیجه بیش از ۴۰ سال بطور گسترده به عنوان لوله کشی آب سرد و مواد شیمیایی استفاده می شده است. گرچه، در طراحی ساختار لوله، ضریب انبساط حرارتی خطی و ضریب الاستیک ناچیز این ماده باید در نظر گرفته شود.

پلی وینیل کلراید کلرینه شده (CPVC) پلی وینیل کلراید می تواند با کلرینه شدن جهت تولید یک پلاستیک وینیل کلراید با مقاومت خوردگی اصلاح شده و مقاومت در دماهای ۲۰ تا ۳۰ درجه بالاتر تغیر کند. بنابراین، CPVC که دارای همان محدوده مقاومت شیمیایی PVC است، می تواند به عنوان لوله، اتصالات، کانال ها، تانکها و پمپها در تماس با مایعات خورنده و آب داغ استفاده می‌شود. برای مثال، می‌توان تعیین کرد که مقاومت شیمیایی این ماده در مقایسه با PVC در محیطهای حاوی wt%20 استیک اسید، wt%50-40 کرومیک اسید wt%70-60 نیتریک اسید در oC300 و wt%80 سولفوریک اسید، هگزان در oC50 و wt%80 سدیم هیدروکسید تا دمای ۸۰ درجه سانتیگراد، بیشتر است.

پلی وینیل استات (PVA) از منومری که در آن یک گروه استات با یک اتم هیدروژن در منومر اتیلن جایگزین شده، تهیه می شود. این پلیمر به عنوان پلیمرهای ساختاری استفاده نمی شود، زیرا یک ترموپلاستیک نسبتاً نرم است و از این جهت تنها برای پوشش ها و چسب ها بکار می رود.

پلی استایرن (PS) از منومر استایرن C6H5CH=CH2 (فنیل بنزن) تشکیل شده است. پلی استایرن یک آمورف و ترموپلاستیک ناهمسان است. حلقه آروماتیک به سختی پلاستیک کمک می کند و از جابجایی زنجیر که پلاستیک را ترد و شکننده می کند، جلوگیری می‌کند. این پلیمر برای کاربردهایی که مستلزم تماس با مواد شیمیایی خورنده هستند، توصیه نمی شود، زیرا مقاومت شیمیایی آن در مقایسه با دیگر ترموپلاستیک های موجود ناچیز بوده و در محیط های خاص شکست فشاری خواهند داشت. پلی استایرن در مقابل تابش اشعه UV (مانند تابش نور خورشید ) حساس بوده و به رنگ مایل به زرد تبدیل می‌شود و مقاومت حرارتی آن نیز تنها 0C 650 است. این ماده به عنوان پوشش تجهیزات و در بسیاری کاربردهای الکتریکی استفاده می شود. اتصالات لوله کشی از این پلاستیک تهیه شده، و بسیاری ظروف هستند که از پلی‌استایرن اصلاح شده، ساخته می شوند. نحوه اتصال این قطعات توسط جوشکاری با استفاده از حلال است، اما استفاده از آنها به آب و محلولهایی که حاوی مواد آلی و معدنی نباشند، محدود می شود. پلی استایرن سومین ترموپلاستیک پرمصرف پس از PE و PP با بازار ۲۰% است.

پلی متیل پنتن (PMP) یک دستگاه پلاستیک با شفافیت و خواص الکتریکی خوب است که می تواند تا دمای 0C150 نیز مورد استفاده قرار گیرد.

آکریلونیتریل بوتادین استایرن (ABS) یک سه بسپار با منومر بوتادین است، منومر دوم، آکریلونیتریل، از مولکول اتیلن که اتم هیدروژن آن با یک گروه نیتریل (CN) جایگزین شده تشکیل شده. منومر سوم از یک مولکول اتیلن با گروه فنیل جایگزین شده با اتم هیدروژن (استایرن) تشکیل شده است.خواص این پلیمر با تغییر نسبت آکریلونیتریل در دو جزء دیگر آن، بطور قابل ملاحظه‌ای متغیر است. این مشتق از رزین های استایرن دارای جایگاه مهمی است. در حقیقت، استحکام، سختی، ثبات بعدی و دیگر خواص مکانیکی آنها، با تغییر این نسبتها قابل اصلاح است. گرچه، این مواد دارای مقاومت حرارتی پایین OC90 استحکام نسبتاً کم، و مقاومت شیمیایی محدود هستند، قیمت پایین، اتصال راحت و راحتی ساخت، این مواد را برای لوله‌های توزیع گاز، آب، فاضلاب و خطوط تخلیه، قسمتهای اتومبیل و خدمات بسیار از تلفن تا قسمتهای مختلف اتومبیل بسیار مورد توجه کرده است. مقاومت این ماده توسط مقدار کمی از ترکیبات آلی تهدید می شود، و به آسانی توسط عوامل اکسید کننده و اسیدهای معدنی قوی مورد حمله قرار می‌گیرد. علاوه بر این، ممکن است گراکینگ فشاری در حضور بعضی مواد آلی در آنها رخ دهد.

پلی تترافلورواتیلن (PTFE) از منومر مولکول اتیلن کاملاً فلورینه شده به دست می آید که تحت نام تجاری تفلون ۴ شناخته شده است. نظر به ذوب بالا (0C327) دارای پایداری دمایی بسیار بالا با مقاومت حرارتی تا 0C280 است، و از نظر شیمیایی یکی از خنثی ترین مواد شناخته شده پس از شیشه، فلزات دیر گداز نظیر تانتالم۱ و فلزات گروه پلاتینیم نظیر ایریدیم ۲ یا پلاتینیم ۳ برای استفاده در مواد خورنده حتی در دمای بالا است. یکی از مشکلات عمده این پلیمر خستگی ناشی از سیکل های حرارتی به واسطه تکرار انبساط و انقباض در یک دوره زمانی در دماهای بالاتر از مرز بیان شده است. با توجه به تخلخل آنها، یکی از دلایل زوال فلوروکربن‌ها جذب مواد شیمیایی و به دنبال آن واکنش با اجزای دیگر در ترموپلاستیک است. هنگامی که این پدیده اتفاق می افتد، منجر به دفرمه شدن سطح، نظیر حبابی شدن می شود. این مواد دارای محدوده دمایی معینی هستند و از افزایش دما باید اجتناب شود.

پلی تری فلورو کلرو اتیلن (PTCE) این کلرو فلورو پلیمر دارای پایداری حرارتی تا 0C175 بوده و مقاومت شیمیایی کمتری نسبت به PTFE کاملاً فلورینه شده دارد. این پلیمرتحت نام تجاری Kel-F شناخته شده است. بطور کلی، خواص کاری این پلاستیک نسبتاً خوب است، بطوری که می تواند به وسیله قالبگیری تزریقی شکل گرفته و نتیجتاً بعنوان پوشش و همچنین برای پوشش‌های پیش ساخته برای بسیاری کاربردهای شیمیایی استفاده شود.

پلی وینیلیدن فلوراید (PVDF) این ماده دارای مقاومت حرارتی کم تر 0C15 و پایداری شیمیایی پایین تری نسبت به دیگر فلوروکربن‌ها است. این پلیمر دارای کاربردهای بسیاری در صنایع فرآیند‌های شیمیایی و ساخت پمپ ها، شیرها، لوله، مخازن کوچک و دیگر تجهیزات است. این مواد به عنوان پوشش و آستر نیز بکار می روند.


ب) پلی آمیدها (PA) : ترموپلاستیک های پلی آمید از طریق چگالش واکنش کربوکسیل اسید (RCOOH) و یک آمین (RNH2) با حذف آب تهیه می شود. این رزین ها تحت نام تجاری نایلون، یکی از اولین محصولات رزینی استفاده شده بعنوان مواد مهندسی شناخته شده است. خواص مکانیکی بسیار خوب بهمراه راحتی ساخت، رشد متداوم آنها را برای کاربردهای مکانیکی حتمی می‌کند. استحکام بالا، سختی، مقاومت در برابر سایش و مدول یانگ بالا خواص بسیار با ارزش نایلون ها بوده و موارد استعمال آن‌ را در کاربردهای مهم در تجهیزات عملیاتی مختلف نظیر چرخ دنده ها، اتصالات الکتریکی، شیرها، نگهدارنده ها، لوله گذاری و پوشش سیم‌ها توجیه می‌کند. مقاومت حرارتی نایلون می‌تواند متغیر باشد، اما در محدوده دمایی 0C100، باید در نظر گرفته شود. این پلیمر به عنوان یک ترموپلاستیک، به استثنای مقاومت ناچیز آن در تماس با اسیدهای معدنی قوی دارای مقاومت شیمیایی خوبی است. نظر به گوناگونی مشتقات یا کوپلیمرهای آغازگر، انواع تجاری متنوعی از رزین های نایلون، با خواص متفاوت موجود است. انواع اصلی آن، نایلون و نایلون ۶۶ است که دارای استحکام بالایی هستند. اخیراً ، انواع تجاری جدیدی از نایلون عرضه شده که بر انواع سابق از نظر غلبه بر محدودیت‌های موجود، برتری دارد. این مواد شامل پلی آمیدهایی است که دارای یک گروه آروماتیک در منومر آنها بوده، و به همین دلیل آرامید رزین (آرومانتیک آمیدها) که تحت نام تجاری Kevlar و Nomex شناخته شده، نامیده می شود.

ج) پلی استالیز : پلی استالزها تحت نام تجاری Delrin و عموماً با پلیمر اولیه فرمالدئید است. ثبات بعدی عالی و استحکام رزین استال، استفاده از آنها در چرخ دنده ها، پره‌های پمپ، انواع اتصالات رزوه ای نظیر درپوش‌ها و قسمتهای مکانیکی را امکان پذیر می‌کند. این مواد مختلف آلی و معدنی در محدوده وسیعی است. همانند بسیاری پلیمرهای دیگر این پلیمر فرمالدئید در مقابل اسیدهای قوی، بازهای قوی یا مواد اکسید کننده مقاوم نخواهد بود.

د) سلولزها : مهمترین مشتقات سلولزی در پلیمرها، ترموپلاستیک های استات، بوتیرات و پروپیونات هستند. این پلیمرها در موارد مهم استفاده نمی شوند اما در قطعات کوچک نظیر پلاک های شناسایی، پوشش های تجهیزات الکتریکی و دیگر کاربردهایی که نیاز به یک پلاستیک شفاف با خواص مقاومت ضربه بالا دارند، استفاده می شود. خواص فرسایشی این مواد، مخصوصاً در مورد پروپیونات خوب است، اما مقاومت مکانیکی آنها در مقایسه با دیگر ترموپلاستیک ها قابل رقابت نیست. آب و محلولهای نمکی اثری بر این مواد ندارند، اما مقادیر ناچیز از اسید، قلیا یا دیگر حلال ها بر روی آن اثر نامطلوبی دارد. بالاترین دمای مفید 0C60 است.

ه) پلی‌کربناتها (PC) : پلی کربناتها توسط واکنش پلی فنل با دی کلرومتان و فسژن تهیه می شود. منومر اولیه این ماده OC6H4C(CH3)2C6 H4COO است. پلی کربنات یک ترموپلاستیک خطی، با خاصیت کریستالیزاسیون پایین، شفاف و با جرم مولکولی بالا بوده وعموماً تحت نام تجاری Lexan شناخته می‌شود. این پلیمر دارای مقاومت شیمیایی بالا در گریس کاری و روغن کاری بوده ولی دارای مقاومت پایین در برابر حلالهای آلی است. مقاومت فوق العاده بالای این ترموپلاستیک (۳۰ برابر شیشه ضربه گیر) به همراه مقاومت الکتریکی بالا راحتی ساخت، مقاومت در برابر آتش و عبور نور بالا (۹۰%) استفاده از این پلیمر را در بسیاری کاربردهای صنعتی توسعه داده است. وقتی یک پوشش ترانسپارنت، با دوام و بسیار ضربه گیر مورد نیاز باشد، پلی کربنات انتخابی مناسبی است. در مجموع ، جهت ساخت قطعات بسیار کوچک ماشین آلات – مخصوصاً ماشین آلاتی که دارای تجهیزات قالبگیری پیچیده هستند، پره های پمپ ها، کلاه های ایمنی و دیگر کاربردهایی که نیاز به وزن سبک و مقاومت ضربه گیری بالا دارد، استفاده از ترموپلاستیک‌های پلی کربنات رضایت بخش است. این مواد می‌توانند در دماهای بین 0C170 تا 0C121 مورد استفاده قرار گیرند.

منبع : انجمن کامپوزیت ایران

02432464407-09
۲۳
آبان

روش های تولید

با توجه به نوع قطعه و خواص مورد نظر، در قطعات کامپوزیتی با زمینه پلیمر، روش های مختلفی برای تولید وجود دارد. در زیر به شرح بعضی از آنها پرداخته ایم :

1)      روش های دستی Hand Lay-up)) : که روش پیچیده ای نیست و تیراژ پایین دارد. این روش برای قطعات ساده که انتظار بالایی از نظر خواص مکانیکی از آنها نداریم استفاده می شود، مانند شناورها، قایق ها، گلدان ها و اتاقک ها .

2) روش :RTM (Resin Transfer Molding) در این روش یک قالب زرینی داریم که پارچه ای از فایبرگلاس در آن قرار می گیرد و سپس رزین تزریق می گردد. این روش از دقت و صافی سطح بیشتری نسبت به روش دستی برخوردار است. .ولی چون فشار بالا نیست به هم پیوستگی کمتری نسبت به روش SMC دارد. RTM نسبت به روش دستی به سرمایه گذاری بیشتری نیاز دارد.

3)  روش SMC (sheet molding comound): در این روش ابتدا مواد ترموست (گرماسخت) با
 الیاف شیشه تقویت شده و سپس بصورت ورق در می آید و سپس تحت گرما و فشار در قالب پرس شده و شکل می گیرد
.

4) روش :GMT (Glass Matt reinforced Thermoplastic) در این روش مواد ترموپلاستیک (گرمانرم) با پارچه ای از فایبرگلاس مسلح شده و تحت فشار شکل می گیرند .

5) روش :FW (Filament Winding) این روش عمدتاً برای تولید قطعات مدور استفاده می شود که به پیوسته تولید می شوند، مثلاٌ برای تولید لوله ها، به دور هسته ای استوانه ای، فایبر گلاس آغشته به رزین پیچیده می شود و بعد مواد تحت گرما حالت نهایی به خود می گیرند .

6) روش  :BMC (Bulk Molding Compound)توده ای از خمیر که شامل مواد پلیمری و فایبرگلاس می باشد، تحت فشار به قالب تزریق می شود .

7) روش :LFT (Long Fiber Thermoplastic) در این روش مواد ترموپلاستیک با الیاف شیشه در داخل اکسترودر مخلوط می شوند و پس از خروج از اکسترودر تحت فشار، قطعه شکل نهایی را به خود می گیرد .

روش های SMC و GMT بیشتر در ساخت قطعات در صنعت خودرو کاربرد دارند. امروزه تمام بدنه خودرو از روش SMC تولید می شود. به طور مثال می توان به خودرو رنو مدل Spas  اشاره کرد که تمام بدنه آن کامپوزیتی است. سپرها، سینی زیر موتور، قطعات زیر خودرو (Under body cover) سقف خودور، قاب چراغ ها، سینی جا چراغی، جای فن و غیره از جمله قطعاتی هستند که معمولاٌ از کامپوزیت ها ساخته می شوند.

منبع: nano.itan

02432464407-09



۲۲
آبان

مزایا و صرفه جویی ها

به علت مزایایی که قطعات کامپوزیتی نسبت به قطعات فلزی دارند و صرفه جویی هایی که در اثر استفاده از آنها ایجاد می شود، هر روز قطعات بیشتری از خودرو به قطعات کامپوزیتی تبدیل میشود. در فلزات امکان ریخته گری با ضخامت های کم را نداریم. اگر با ورق نیز به شکل دهی قطعه بپردازیم، دور ریز زیاد دارد و ضایعات را زیاد میکند. در صورتی که برای کامپوزیت ها این محدودیت وجود ندارد و به خاطر قدرت سیلان بالا می توانند تمام قالب را پر کرده و شکل قطعه مورد نظر را کامل کنند.

در زیر به بعضی از مزایا و صرفه جویی های ناشی از استفاده از مواد کامپوزیت در صنعت خودرو، اشاره شده است :

1) سبکی:

این قطعات به خاطر وزن مخصوص کم دارای وزن کمتری نسبت به قطعات فلزی هستند. وزن تا حدود نصف و حتی بیشتر کاهش پیدا می کند. طبیعتاً این کاهش وزن در کاهش مقدار سوخت و استفاده از موتورهایی با قدرت کمتر و کوچک تر موثر خواهد بود. این مساله باعث صرفه جویی در مصرف سوخت و در نتیجه کاهش آلودگی می گردد.

2) خواص مکانیکی بالا:

به همان نسبت که وزن قطعات کم می شود، مقاومت مکانیکی آنها در ابعاد مختلف افزایش می یابد و به طور متوسط در تمام خواص مکانیکی خواص بهتری نسبت به فلزات از خود نشان میدهند. این مسئله باعث افزایش عمر قطعات خواهد شد.

3) مقاومت در برابر خوردگی :

بر خلاف فلزات تاثیر مواد نمکی و شیمیایی و اکسید شدن در قطعات کامپوزیتی کم است یا اصلاً وجود ندارد که باعث صرفه جویی در هزینه های نگهداری و افزایش عمر قطعات می شود و استفاده از قطعات در محیط های مرطوب را برای مدت طولانی فراهم می نماید.

4) سرمایه گذاری کم:

بر خلاف قطعات فلزی برای تولید قطعات با استفاده از کامپوزیت ها سرمایه گذاری کمتری لازم است. به طور مثال اگر برای تولید یک قطعه از فلز چند قالب لازم باشد، برای تولید همان قطعه با کامپوزیت، از یک یا دو قالب بیشتر استفاده نمی شود .

5) سهولت تولید:

این قطعات را میتوان با ماشین آلات کمتر و با سهولت بیشتری نسبت به فلزات و با تعداد بیشتری تولید کرد.

منبع: nano.itan

02432464407-09


۲۱
آبان

کاربرد کامپوزیت ها در صنعت خودرو

صنعت کامپوزیت یکی از صنایع رو به رشد در عرصۀ مهندسی مواد است .امروزه به خاطر مزایایی که کامپوزیتها نسبت به فلزات دارند، توسعۀ زیادی پیدا کرده اند .از جمله میتوان به کاربرد قطعات کامپوزیتی در صنعت خودرو اشاره کرد. مهندس مباهات، مدیر عامل شرکت نورایستاپلاستیک، طی مصاحبهای با شبکۀ تحلیلگران تکنولوژی ایران، به طرح دیدگاههایی در این زمینه پرداخت که در زیر به برخی نکات مهم آن اشاره شده است: اکثر قطعاتی که در خودرو کاربرد دارند فلزی هستند، اما فلزات محدودیتهایی دارند که راه را برای استفاده از قطعات کامپوزیت در صنعت خودرو باز کرده است. کامپوزیتهای مورد استفاده در صنعت خودرو بیشتر از نوع کامپوزیتهای زمینه پلیمری هستند. این کامپوزیتها از مواد ترموست (گرماسخت) و ترموپلاستیک (گرمانرم) تشکیل شده اند که توسط الیاف شیشه تقویت میشوند .

منبع: nano.itan

02432464407-09